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Parsing - State of Affairs

Supervised
Posit a grammar

Train on annotated data (Treebank)

Apply to target text

Drawbacks
Which grammar?

Annotation is expensive

Strong domain dependence
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Unsupervised Dependency Parsing

Dependency Parsing
Simplify by removing latent
structure

Unsupervised Learning
Learn without annotation

Early Work
Carroll and Charniak (1992) - PCFG over parts-of-speech

Yuret (1998) - Mutual Information between head & dependent

Paskin (2001) - Learns P(dependent |head ,direction)
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Dependency Model with Valence

DMV - Klein and Manning (2004)
Significantly outperformed previous approaches

First to beat the adjacent-word baseline

Basis for many recent methods (Cohen and Smith, 2009;
Headden III et al., 2009)

Reasons for Success

Use of PoS rather than lexical items

Notion of valence

Treatment of distance
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Goal: An Experimental Framework

Requirements:

Modular:
easily add/remove models

Make use of different information
PoS
Lexical
Word Categories

What is a good framework?
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Statistical Machine Translation

The SMT Problem

The IBM Learning Formulation - Brown et al. (1993)
Find most likely word alignments
Use alignments to generate translation table
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Statistical Machine Translation

The IBM Assumptions
The source word generates the target word(s) based on:

M1 - Lexical: identities of source and target words
M2 - Distortion: location of source and target in their
respective sentences
M3 - Fertility: likelihood of source word to generate
multiple targets
Null: account for “spontaneously generated” targets
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Convergence

Similarities
Detect relationships between words

Take into account similar factors:

IBM DMV
Type Association Lexical PoS
Relative Location Distortion Dist/Dir
Many-to-One Fertility Valence
Sourceless Targets Null Root

Modular & incremental framework

Gibbs sampling implementation of IBM models - Thanks Chris!
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EM vs. Gibbs Sampling

EM: Clever counting of all possible alignments

+ very fast

- restrictive

Sampling: Small transitions between alignments

+ easy to extend and add models

+ easy to experiment

- much slower
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EM vs. Gibbs - Example

IBM Model 3 (Brown et al. 1993, Equation 32):

P(f|e) =
l∑

a1=0

· · ·
l∑

am=0

(
m − φ0

φ0

)
pl−2φ0

0 pφ0
1

l∏
j=1

n(φi |ei)×

m∏
j=1

t(fi |eai )d(j |aj ,m, l)

Gibbs transition probabilities:

P(A[i] = j ⇒ ĵ ) ∼

P(Â)
P(A)

=
P(wj ,#deps(j)− 1)P(wĵ ,#deps(̂j) + 1)

P(wj ,#deps(j))P(wĵ ,deps(̂j))
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Model Construction

Ideally, build dedicated models

Practically, start with what we have

IBM models address many necessary factors

Experiment and improve as we go
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Applying the Idea
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Modeling Issues

Immediate Concerns

Self alignments

- prevent words from choosing themselves as heads

Distortion model

- distances (and direction) more relevant than location
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Data

Datasets
English - Penn. Treebank portion of the Wall Street Journal

Danish and Dutch datasets from CoNLL 2006 shared task

Format
Gold standard PoS tags

Remove punctuation

Sentences with ≤ 10
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Results

Corpus M 1 M2 M3 R-br
WSJ10 25.42 35.73 39.32 32.85
Dutch10 25.17 32.46 35.28 28.42
Danish10 23.12 25.96 41.94 16.05 *

Model 2 beats baseline

Klein and Manning (2004): 43.2% for DMV

Surprisingly good for non-dedicated model!
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Model 1 - Word Type Association

PoS attachment
NN DET
IN NN

NNP NNP
DET NN
JJ NN

PoS attachment
NNS JJ
RB VBZ

VBD NN
VB TO
CC NNS

Detects dependency relations

Directionality is a problem

Note to self: prevent cycles!
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Model 2 - Distance

Verbs have wider attachments

Infinitives (VB) attach one to the left (TO)

Proper nouns attach forward (no DET)
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Model 3 - Fertility

Verbs have wider fertility distribution

Infinitives mostly have a single dependent
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Conclusions

Lessons
IBM models are a good start

Minor adjustments necessary

Further adjustments beneficial

Framework
Easy to extend and combine

Easy to evaluate components

Modular, sampling-based approach works
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Future Work

Improving the Model

Enforce tree structure

Separate left and right

Use lexical information

Model root node better

Extensions and Applications
Incremental Learning (following Spitkovsky et al. 2010)

Dependency-based SMT (e.g., Burkett et al. 2010)
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Thank You!
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